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LOW-THRUST MANY-REVOLUTION TRAJECTORY OPTIMIZATION
VIA DIFFERENTIAL DYNAMIC PROGRAMMING AND A SUNDMAN

TRANSFORMATION

Jonathan D. Aziz∗, Jeffrey S. Parker†, Daniel J. Scheeres‡ and
Jacob A. Englander§

Low-thrust trajectories about planetary bodies characteristically span a high count of orbital
revolutions. Directing the thrust vector over many revolutions presents a challenging op-
timization problem for any conventional strategy. This paper demonstrates the tractability
of low-thrust trajectory optimization about planetary bodies by applying a Sundman trans-
formation to change the independent variable of the spacecraft equations of motion to the
eccentric anomaly and performing the optimization with differential dynamic programming.
Fuel-optimal geocentric transfers are shown in excess of 1000 revolutions while subject to
Earth’s J2 perturbation and lunar gravity.

INTRODUCTION

Highly efficient low-thrust propulsion systems enable mission designers to increase the useful spacecraft
mass or delivered payload mass above that from high-thrust engine options. This improvement typically
comes at the expense of increased times of flight to mission destinations. For low-thrust trajectories about
planetary bodies, an orbital period on the order of hours or days provides inadequate time to impart a sub-
stantial change to the orbit and results in a large number of revolutions that are traversed before reaching the
desired state. Determining the optimal control over hundreds or thousands of revolutions poses a sensitive
and often unwieldy, high-dimensional optimization problem.

Indirect Solutions to Low-Thrust Many-Revolution Orbit Transfers

Classical approaches employ optimal control theory, named the indirect, Lagrange multiplier, or adjoint
method, beginning with Edelbaum’s transfer between circular orbits of different semi-major axis and incli-
nation. Edelbaum developed an analytical solution to maximize the inclination change, ∆i, while achieving
a given semi-major axis change, ∆a, between two circular orbits [1]. The result was repeated by maximiz-
ing the delivered mass over a fixed transfer duration with ∆a and ∆i specified [2]. Edelbaum assumed the
orbit to remain circular throughout the transfer, a constant thrust angle within each revolution, a constant
thrust acceleration, and two-body dynamics. The circular orbit and constant angle assumptions are reason-
ably accurate, but constant thrust acceleration is a poor model for a propellant consuming spacecraft and does
not allow for coasting. Furthermore, a two-body dynamic model is insufficient for long duration low-thrust
missions. Wiesel and Alfano recast the problem to minimize the accumulated velocity change, ∆V , when
∆a and ∆i are specified [3]. The circular orbit assumption was maintained, but a constant thrust magnitude
and mass flow rate were assumed instead of constant thrust acceleration, and the thrust angle was allowed to
vary. Minimizing ∆V under these conditions similarly minimizes the transfer time and fuel consumption.
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Wiesel and Alfano solved the resulting two point boundary value problem numerically to produce a contour
map of a constant Lagrange multiplier as a function of ∆a and ∆i. Thrust steering for the fast time scale
transfer within a single revolution is found analytically after obtaining the Lagrange multiplier from the map.
For the long time scale problem, i.e. many-revolution transfers, the Lagrange multiplier is again read from
the map, but the thrust angle expression must be approximated numerically. Kéchichian reformulated Edel-
baum’s transfer as a minimum-time problem and found a simple analytical expression for the time-varying
thrust angle to achieve the desired ∆a and ∆i [4].

Edelbaum extended his analysis to obtain solutions for small changes to any or all of the classical orbital
elements for elliptical orbits, again in fixed time with continuous thrust acceleration and a two-body dynamic
model [5]. The two point boundary value problem requires numerical solution for the fast time scale transfer,
but is reduced to analytical expressions for many-revolution transfers by neglecting periodic terms in the
orbital element rates of change due to thrust. Kéchichian obtained the adjoint equations of motion for the
minimum-time rendezvous problem in non-singular equinoctial elements, and presents a numerical solution
with Newton-Raphson iteration [6]. He suggested an orbit averaging technique to extend this result to long
duration rendezvous, and followed such an approach to improve Edelbaum’s transfer to include changes
in the right ascension of the ascending node, ∆Ω, and Earth’s J2 perturbation in the dynamic model [7].
Kéchichian further developed the low-thrust rendezvous in equinoctial elements by considering Earth zonal
harmonics up to J4 [8], and shows analytical but suboptimal approaches for changing ∆a or ∆i with eclipses
included [9, 10].

The indirect problem is solved when Lagrange multipliers (adjoints or costates) are found to produce ad-
missible states and controls that extremize the Hamiltonian at every instant in time, while obeying the state
and adjoint equations of motion and satisfying boundary and transversality conditions. Under significant
assumptions, e.g. Edelbaum’s transfer, analytic expressions are found that enable quick trajectory computa-
tion. Typically, however, values of the Lagrange multipliers must be guessed, evaluated in the equations of
motion, and corrected. The evaluation and correction is iterated in a numerical procedure until optimality
conditions are satisfied. An appropriate initial guess for the Lagrange multipliers is non-intuitive and the
resulting trajectory is sensitive to their values. That sensitivity is amplified when the trajectory encompasses
many revolutions. The indirect approach is further complicated by the need to reform the Hamiltonian and
re-derive the adjoint equations of motion and boundary conditions as different state variables, constraints,
and dynamics are considered.

Low-Thrust Control Laws

In a similar flavor to the indirect approach, control laws use just a few input parameters to describe a rule
for maneuvering a spacecraft during a transfer. The indirect solution is an optimal control law determined by
the Lagrange multipliers, but sub-optimal control laws that follow some heuristic can be particularly useful in
mission design and even approach optimal results. Control laws prescribe the thrust direction and magnitude
as a function of time or angular position, for example. Spacecraft equations of motion are then evaluated
with thrust adhering to the control law until the target orbit state is reached, but if the control law is poorly
chosen, trajectory computation can proceed indefinitely. Lyapunov feedback control laws are desirable so
that convergence can be expected.

Kluever blends the results of optimal control theory for the individual minimum-time changes ∆a, ∆i and
to eccentricity, ∆e, subject to two-body dynamics [11]. The control law assembles the thrust direction from
the weighted optimal thrust directions to change each orbital element. Chang, Chichka, and Marsden suggest
a Lyapunov function that is the weighted sum of squared errors of the angular momentum and Laplace vectors
between the current and target orbit [12]. Minimizing this Lyapunov function at each instance in time yields
asymptotic stability for local transfers between Keplerian orbits. Chang et al. suggest transfers through a
finite number of intermediate orbits for arbitrary global transfers, e.g. over many revolutions, and present a
method for choosing those intermediate orbits.

Petropolous derived analytic expressions for the optimal thrust directions and optimal orbit locations for
changing each of the classical orbital elements to propose two control law strategies that include a mechanism

2



for coasting based on the effectivity of the maneuver [13]. This work was further developed as the Q-law,
where Q is a candidate Lyapunov function named the proximity quotient [14]. Q captures the proximity to
the target orbit, and best-case time-to-go for achieving the desired change in each orbital element. Thrust
directions are chosen to maximize the reduction in Q, but if the rate of reduction is below a user-specified
value, the thrust is turned off. Petropolous shows a minimum-time Q-law transfer that approaches Edelbaum’s
result and the minimum-fuel case with coasting over 666 revolutions, near-optimal results with inclination
change included and for a transfer about Vesta, and successful computation of a challenging Molniya-type
transfer.

Heuristic control laws generally yield sub-optimal trajectories, but follow a policy that a mission designer
deems acceptable. They can be particularly useful to construct an initial guess for a separate optimization
procedure, or to estimate fuel and time of flight requirements, for example. Furthermore, the control strategy
can be detached from the dynamic model. That is to say, a rule for steering can be set forth and employed
with an arbitrary set of active forces.

Direct Optimization of Low-Thrust Trajectories

While indirect methods solve for the abstract Lagrange multipliers, direct methods seek the physical vari-
ables explicitly. A decision vector is formed of control variables, state variables, or other variable parameters
that collectively describe an entire trajectory. The decision vector could also be the input parameters for a
control law. The direct optimization procedure then updates the decision vector iteratively until convergence
criteria are satisfied.

Direct optimization of heliocentric low-thrust trajectories is dominated by direct transcription and nonlin-
ear programming (NLP) techniques. Direct transcription transforms the continuous optimal control problem
into a discrete approximation [15]. For example, the continuous control uptq now becomes the sequence
ru0,u1, ...,uN´1s, and that sequence is the decision vector for the discretized trajectory of N stages, also
called grid or mesh points, or nodes. Nonlinear programming generally involves the assembly and inversion
of a Hessian matrix that contains the second derivatives and cross partial derivatives of a scalar objective
function with respect to the decision vector. The size of the optimization problem grows quadratically with
the number of decision variables and proves to be a computational bottleneck when applying nonlinear pro-
gramming to planetocentric low-thrust trajectories that require a large decision vector. Nonetheless, Betts
solved the large-scale NLP problem for geocentric trajectories over several hundred revolutions using collo-
cation and sequential quadratic programming in the Sparse Optimization Suite (SOS) software [16–20]. Betts
presents a 578 revolution transfer between low Earth orbits with continuous but throttled thrust and oblate
Earth perturbations through J4 [18] and a minimum time lunar transfer with two burn phases of maximum
thrust and an intermediate coast phase [19]. More recently, Betts modeled coast phases for eclipse conditions
and constructed initial guesses for thrust arcs with the control law from Chang et al. An initial guess of
the entire trajectory was constructed with a receding horizon algorithm and supplied to SOS for optimiza-
tion [20]. Furthermore, the equations of motion considered oblate Earth perturbations through J4, Sun and
lunar gravity perturbations, and true longitude as the independent variable. Transfers from low earth orbit to
geosynchronous orbit in 248 revolutions with 363 alternating burn and coast phases and to a Molniya orbit in
372 revolutions with 693 phases both maximized the delivered mass.

A linear scaling of the optimization problem size with number of control variables is characteristic of
differential dynamic programming (DDP) [21]. DDP solves a subproblem for each uk, k P r0, N ´ 1s in
the sequence ru0,u1, ...,uN´1s to optimize a local model of the cost remaining along the trajectory, instead
of viewing the decision vector as a whole. This is in stark contrast to methods that update the entire control
sequence in the computationally expensive matrix inverse of a large Hessian. If the control vector at each
stage is of dimension m, then DDP solves N NLP problems of size m, rather than a single NLP problem of
size Nm.

The DDP procedure for updating the nominal control policy is called the backward sweep and is motivated
by Bellman’s Principle of Optimality.

An optimal policy has the property that whatever the initial state and initial decision are, the
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remaining decisions must constitute an optimal policy with regard to the state resulting from the
first decision [22].

Considering the state that results from applying the nominal control up to stage k “ N´1, the sole remaining
decision is uN´1. Optimization of this final decision is now independent of those preceding it and minimizes
the cost-to-go that is incurred along this final stage. After performing this optimization and stepping back
to stage k “ N ´ 2, the remaining decisions are uN´2 and uN´1. The latter is known, however, and only
the control at the current stage needs to be determined. An update to the entire control policy is possible by
proceeding upstream to the initial state at stage k “ 0, while optimizing each stage decision along the way.

The current state-of-the-art technology for the optimal design of low-thrust planetary trajectories is the
Mystic Low-Thrust Trajectory Design and Visualization Software [23]. Mystic has best demonstrated its
capabilities with the success of NASA’s Dawn mission [24]. After an interplanetary leg that included a Mars
gravity assist, Dawn completed its first planetary segment about the asteroid Vesta and will end its mission in
a second planetary segment at the asteroid Ceres, where it currently operates. Mystic’s optimization engine
is built around the Static/Dynamic Optimal Control algorithm, a DDP approach developed by Whiffen [25].
Despite the favorability of DDP for large scale optimization, computation time limits Mystic to about 250
revolutions for optimized trajectories before switching to the Q-law [26]. Lantoine and Russell introduced
Hybrid Differential Dynamic Programming (HDDP) [27–29], a DDP variant that makes the most computa-
tionally expensive step suitable for parallelization.

DDP and a Sundman Transformation

This work advances the capability of differential dynamic programming applied to low-thrust spaceflight
by changing the independent variable of the equations of motion. The Sundman transformation [30] is a
general change of variables from time to a function of orbital radius, and effectively regularizes the step
size of numerical integration [31]. Selecting the new independent variable as the eccentric anomaly is found
to add numeric stability when mapping objective function sensitivities along a trajectory, making efficient
optimization possible over hundreds of revolutions and thousands of control variables. Yam, Izzo, and Biscani
previously applied a Sundman transformation to the Sim-Flanagan transcription to optimize interplanetary
trajectories [32, 33]. Pellegrini, Russell, and Vivek show accuracy and efficiency gains for propagation with
the Sundman transformation in the Stark and Kepler models [34].

Presentation begins with the state and dynamic model used to compute example trajectories. Next, the
generalized Sundman transformation is provided with a derivation for the change of variable to eccentric
anomaly. The optimization problem is then posed, and the procedure for computing trajectories is detailed.
Implementation closely follows the procedure outlined by the HDDP algorithm [27], so presentation of the
algorithm is withheld. Results for the Sundman-transformed DDP approach follow in the form of an example
orbit transfer solved for different cases of increasing complexity.

PROBLEM FORMULATION

Fuel-optimal low-thrust transfers from geostationary transfer orbit (GTO) to geosynchronous orbit (GEO)
are computed to demonstrate the efficacy of the Sundman-transformed DDP approach.

Spacecraft State and Dynamics

The spacecraft state is chosen as a Cartesian representation of the spacecraft inertial position and velocity.

r “ rx y zs
T
, v “ r 9x 9y 9zs

T (1)

Henceforth, boldface is reserved for column vectors and an overhead dot denotes the time derivative. Imple-
mentation of the HDDP algorithm makes use of an augmented state vector that includes time t, mass m, and
thrust control variables T , α, and β.

X “ rt x y z 9x 9y 9z m T α βs
T (2)
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Table 1: Dynamic Model Parameters.

µ‘ 398600.44 km3/s2 Tmax 0.25 N

µK 4904.928372 km3/s2 Isp 1950 s

J2 0.0010826265 g0 0.00980665 km/s2

R‘ 6378.136 km

Spherical thrust control is defined by magnitude T , yaw angle α, and pitch angle β, where the angles are
defined relative to the radial-transverse-normal (RSW) frame. RSW basis vectors and thus the rotation to the
inertial frame are defined by,

rr̂ ŝ ŵs “

„

r

r

pr ˆ vq ˆ r

‖pr ˆ vq ˆ r‖
r ˆ v

‖r ˆ v‖



. (3)

Thrust vector components are then
«

Tr
Ts
Tw

ff

“

«

T sinα cosβ
T cosα cosβ
T sinβ

ff

,

«

Tx
Ty
Tz

ff

“ rr̂ ŝ ŵs

«

Tr
Ts
Tw

ff

, (4)

so that the pitch angle is measured from the orbit plane about the radial direction and the yaw angle is mea-
sured from the transverse direction about the angular momentum. No concern is given for angle wrapping.
In fact, computation exhibits favorable performance when the angles are unbounded. Spacecraft dynamics
consider geocentric two-body motion perturbed by thrust, J2, and lunar gravity,

9X “ 9X‘ ` 9XT ` 9XJ2
` 9XK, (5)

where 9X‘ is the two-body motion due to point mass Earth gravity, 9XT is the thrust acceleration and mass
flow rate, 9XJ2

is Earth’s J2 perturbation, and 9XK is the point mass lunar gravity perturbation, defined by,

9X‘ “

”

1 9x 9y 9z ´
µ‘
r3
x ´

µ‘
r3
y ´

µ‘
r3
z 0 0 0 0

ıT

, (6a)

9XT “

„

0 0 0 0
Tx
m

Ty
m

Tz
m

´
T

Ispg0
0 0 0

T

, (6b)

9XJ2
“ ´

3J2µ‘R
2
‘

2r5

„

0 0 0 0 xp1´ 5
z2

r2
q yp1´ 5

z2

r2
q zp3´ 5

z2

r2
q 0 0 0 0

T

, (6c)

9XK “ ´µK

„

0 0 0 0
x´ xK

‖r ´ rK‖3
`
xK

rK
3

y ´ yK

‖r ´ rK‖3
`

yK

rK
3

z ´ zK

‖r ´ rK‖3
`

zK

rK
3

0 0 0 0

T

.

(6d)

Gravitational parameters for the Earth and the Moon are µ‘ and µK, respectively. A constant power model is
assumed with T P r0, Tmaxs. Thrust magnitude constraints are enforced by a null-space method [28]. Mass
flow rate is inversely proportional to the specific impulse, Isp, and acceleration due to gravity at sea level g0.
The J2 perturbation is owed to the Earth’s oblateness, and is a function of the Earth’s equatorial radius R‘.
Table 1 lists these dynamic model constants. Including the lunar perturbation requires the Moon’s inertial
position with respect to the Earth,

rK “ rxK yK zKs
T
, (7)

that is assumed to evolve according to geocentric two-body motion. The Moon’s state is initialized with the
orbital elements listed in Table 2, where ω and M are introduced as the argument of periapsis and mean
anomaly.
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Table 2: The Moon’s Earth-Centered ICRF Orbital Elements at 01 Jan 2000 00:00:00.0 TDB.

a 381218.68756119191 km Ω 12.23324045627363˝

e 0.06476694126942699 ω 60.7835754956735˝

i 20.94024252661913˝ M 140.7402558848975˝

A 2000 kg spacecraft is initialized at the J2000 epoch on the x-axis with the position and velocity selected
for an example GTO with approximately 300 km perigee altitude and 28.5˝ inclination.

X0 “

»

—

—

—

—

—

—

—

—

—

—

—

–

t0
x0
y0
z0
9x0
9y0
9z0
m0
T0
α0
β0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

–

01 Jan 2000 12:00:00.0 TDB
6678.1363 km

0
0
0

8.92130624172 km/s
4.84387407216 km/s

2000 kg
0
0
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(8)

Equation 8 is the spacecraft initial state vector. The initial time is listed as the J2000 epoch, but state variable
t is numerically integrated to track the relative time from t0 “ 0. An initial guess for the controls must be
provided along the entire trajectory. Those controls are identically zero at all times as shown for the initial
state.

Sundman Transformation

In regularizing the equations of motion to solve the three-body problem, Karl Sundman introduced a change
of independent variable from time to the new independent variable τ [30].

dt “ cnr
ndτ (9)

Time and the new independent variable are related by a function of the orbital radius. The real number n and
coefficient cn may be selected so that τ represents an orbit angle. Transforming the time-dependent equa-
tions of motion simply requires a multiplication by the functional relationship between the two independent
variables.

X̊ “

ˆ

d

dt
X

˙

dt

dτ
“ 9Xcnr

n (10)

Time-dependent equations of motion are typically propagated for a prescribed duration from the state at an
initial epoch. Now however, propagation is specified for a duration of τ and the elapsed time is unknown a
priori. Time may be tracked by including it in the state vector.

The Sundman transformation to eccentric anomaly is found by differentiating Kepler’s equation,

t “
a

a3{µ pE ´ e sinEq , (11)

dt “
a

a3{µ p1´ e cosEqdE “ cnr
ndτ , (12)

where E is the eccentric anomaly. Considering n “ 1 and making use of the relationship r “ ap1´ e cosEq
leads to a solution for c1.

c1 “ p1{rq
a

a3{µ p1´ e cosEq “ p1{rq
a

a3{µ pr{aq “
a

a{µ (13)

dt “
a

a{µ rdE (14)
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Sundman Transformed Dynamics

The Sundman transformation is made after assembling the complete equations of motion with respect to
time.

X̊ “ p 9X‘ ` 9XT ` 9XJ2 `
9XKq

a

a{µ‘ r (15)

HDDP makes use of the first-order state transition matrix (STM) and second-order state transition tensor
(STT) to map cost function derivatives between stages. Differential equations for the STMs (referring to both
the STMs and STTs) rely on the dynamics matrix and tensor,

Ai,j “
B 9Xi

BXj
, (16a)

Ai,jk “
B2 9Xi

BXjBXk
, (16b)

where tensor notation has been adopted to avoid ambiguities. The dynamics matrix and tensor similarly need
to be transformed to reflect the change of independent variable.

Λi,j “
BX̊i

BXj
(17a)

Λi,jk “
B2X̊i

BXjBXk
(17b)

The new dynamics matrix and tensor in Equations (17a) and (17b) are similarly obtained first with respect
to time and then the change of variables is performed by extensive application of the chain rule. First, the
general Sundman transformation is redefined along with its first and second derivatives with respect to the
state vector.

η “ dt{dτ “ cnr
n (18)

ηX
i “

Bη

BXi
(19)

ηXX
i,j “

B2η

BXiBXj
(20)

After assembling Equations (16a) and (16b), the chain rule completes the transformation.

Λi,j “ Ai,jη ` 9XiηX
j (21a)

Λi,jk “ Ai,jkη `Ai,jηX
k `Ai,kηX

j ` 9XiηXX
j,k (21b)

Equations (18) to (21) are stated generally for any change of independent variable, but τ is selected as the
eccentric anomaly for the computed examples.

Augmented Lagrangian Method

The standard DDP formulation adjoins terminal constraints ψpXf q “ 0 to the original cost function using
a constant vector of Lagrange multipliers. HDDP selects a cost function based on the augmented Lagrangian
method where a scalar penalty parameter places additional weight on terminal constraint violations. Here a
penalty matrix is used so that the additional weight on each constraint can be treated individually.

J “ φ` λTψ `ψTΣψ (22)

The first term φpXf q is the original objective to be minimized, where Xf is the final value of the state
vector. Multipliers λ are initialized as the zero vector and updated at every iteration to push the trajectory
toward feasibility. Penalty matrix Σ places additional weight on constraint violations and serves to initialize
a quadratic cost function space. In contrast to previous approaches that continually increase the penalty
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weight [27, 35], Σ is held constant for all iterations. In practice, the entries of Σ are tuned after observing
how the iterates progress toward feasibility. For example, an initial attempt to optimize a trajectory might
begin with Σ as a scalar multiple of the identity matrix so that each constraint is weighted equally. If iterates
show little progress toward satisfying a particular constraint, its associatedΣ entry could be increased and the
process restarted. Similarly, if the algorithm appears to prioritize a constraint without working to satisfy the
other constraints, theΣ entry for that prioritized constraint could be reduced. The initial guess of zero-valued
multipliers is not a requirement and may also be viewed as tuning parameters.

Final conditions for GEO are described in the terminal constraint function ψ, so that ψpXf q “ 0 for a
feasible solution. The objective is to arrive at GEO after expending the minimum amount of propellant.

φ “ ´mf (23a)

ψ “

»

—

—

–

‖rf‖´ 42164.169972 km
‖vf‖´ 3.07466008566 km/s

rf ¨ vf
zf
9zf

fi

ffi

ffi

fl

(23b)

Σ “ diagpσ0, σ1, σ3, σ4q (23c)

The terminal constraint function is satisfied upon arrival at GEO distance with circular orbital velocity, zero
flight path angle and zero inclination. The arrival longitude is unconstrained. The penalty matrix places
additional weight on the final position and velocity magnitude constraints, and its entries are later specified
for each computed example. A scaled feasibility tolerance requires ‖ψ‖ ă 1 ˆ 10´6 and an optimality
tolerance requires ER0 ă 1ˆ 10´7, where ER0 is the expected reduction of the objective function obtained
in the backward sweep [27]. Then the constraint violations are satisfactorily small and the backward sweep
sees a stationary point of the cost function with respect to controls and multipliers. Scaling improves the
numerical stability of the procedures but adds to the set of tuning parameters. Here a distance unit DU , time
unit TU , force unit FU , and mass unit MU are set as

DU “ 42164.0 km

TU “ 10

b

DU3
{µ‘

FU “ 0.25 N

MU “ FU TU2
{DU

, (24)

where the distance unit is approximately GEO radius, the time unit has been scaled by an additional factor
of 10, and the force unit is the maximum thrust. The scaled feasibility tolerance corresponds to a 42.164 m
position requirement and 0.3075 mm/s velocity requirement.

Trajectory Computation

HDDP considers a discrete form of DDP where a trajectory can be described by any number of phases,
with each phase described by a number of stages. This work considers single phase trajectories of N stages.
The trajectory computation step is named the forward pass, and is the sequence of function evaluations,

Xk`1 “ F pXkq, k “ 0, 1, ..., N ´ 1. (25)

The transition function F dictates how the state evolves between stages, and might obey a system of linear,
nonlinear, or differential equations, and is not necessarily deterministic. DDP is applicable to all of these sys-
tems in both continuous and discrete form [21]. The relevant transition function is the integral of Equation 15
between stages.

Xk`1 “Xk `

Ek`1
ż

Ek

X̊k dE (26)
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Propagating a trajectory from the initial state requires effective discretization and a numerical integration
scheme. Equation 26 is integrated with a fixed-step fifth-order Dormand-Prince method [36]. The trajectory
is described by 100 stages per revolution that are equally spaced in eccentric anomaly. There are then 300
control variables for every revolution. Each stage offers an opportunity to update the thrust control variables
that are held constant across an integration step.

A fixed integration step accumulates ∆E “ Ek`1 ´ Ek “ 2π{100. Having set the initial guess for all
stage control variables to zero, the first iteration considers a ballistic orbit in GTO for a prescribed number of
revolutions, Nrev. The fixed transfer duration in eccentric anomaly is 2πNrev.

STM Computation

Results were generated on a Dual Intel Xeon quad-core 2GHz, 24GB memory Linux machine. STM
computations were distributed in parallel across 8 cores with OpenMP [37]. All other steps of the algorithm
run serially. To permit parallelization, STMs are obtained separately from attempted trajectories with trial
controls. When an iterate is accepted as the new nominal trajectory, Equation 26 is augmented with the STM
differential equations.

Φ̊i,j “ Λi,aΦa,j (27a)

Φ̊i,jk “ Λi,aΦa,jk ` Λi,abΦa,jΦb,k (27b)

STMs are initialized as Φi,j “ δi,j and Φi,jk “ 0. Equation 27 is stated in terms of the Sundman transfor-
mation, but all that changes from the time-dependent case is the notation. EachXk is known, so integrations
from any stage k to k ` 1 can be performed separately and in parallel, instead of serially from k “ 0 to
k “ N ´ 1.

RESULTS

Four example trajectories are computed from initial conditions in Equation 8, and with HDDP employed
to minimize the augmented Lagrangian described in Equations (22) and (23). First, only two-body dynamics
are considered, so that Equation 15 ignores the J2 and lunar gravity perturbations. The J2 perturbation
is introduced in the second case, while the third and fourth cases include both perturbations. The transfer
duration is fixed at Nrev “ 450.5 for the first three cases, and Nrev “ 1000.5 for the final case. The penalty
matrix is initially tuned to Σ “ diagp100, 10, 1, 1, 1q.

Case 1: 450.5 Revolutions With 2-Body Dynamics

The first example spans 450.5 revolutions, yielding 135,150 control variables to compute. In the 2-body
dynamic model, the spacecraft acceleration is due to point-mass Earth gravity and thrust. The choice of
Nrev “ 450.5 is somewhat arbitrary but allows quick computation of a many-revolution trajectory with a
large number of control switches between thrust and coast arcs. Prescribing the extra half-revolution fixes the
terminal state of the initial guess to be at apogee on the negative x-axis.

Figure 1 provides a two-dimensional view of the resulting transfer in the equatorial plane and the steering
profile for both thrust angles. After 450.5 revolutions, 315.75 days have elapsed and the spacecraft arrives in
GEO with a final mass of 1759.1754 kg. The eccentricity vector and line of nodes remain coincident through-
out the transfer, yielding symmetry in the pitch and yaw steering to remove the eccentricity and inclination.
Apogee raising early in the transfer is leveraged for a cheaper inclination change. Both Figures 1 and 2 show
how a long initial maneuver is followed by the bang-bang thrust profile expected for a fuel-optimal transfer.
Yaw steering is symmetric about the transverse direction and switches sign at the apsides. Pitch steering to
change the inclination is favored around apogee. Both pitch and yaw are zero-valued for coast arcs, which is
not arbitrary, because this sets the nominal value for a control update during iteration. Given the definitions
of α and β in Equation 4, if an iterate attempts to turn the thrust on, that initial thrust increment must step
from the positive transverse and/or normal directions.
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Figure 3 shows the performance of HDDP from the ballistic initial guess through 86 iterations to conver-
gence in 54 minutes of computer runtime. The algorithm approaches the final solution within the first half of
the total iterations. Remaining efforts then refine the solution to meet convergence criteria. Final values for
the multipliers are listed in Table 3. Constraints on the flight path angle and z-coordinate are satisfied by the
initial guess. The associated multipliers λ2 and λ3 only see minor updates from their initial values of zero.

Evolution of the constraint violations and multipliers through each iteration is provided in Figure 4. The
initial guess begins with small errors in the radial position, flight path angle and z-coordinate that have been
introduced by numerical integration. Errors are primarily incurred during the many low altitude perigee pas-
sages of the ballistic 450.5 revolutions in GTO. The step size regularization achieved by changing variables to
the eccentric anomaly works to mitigate this effect. Integration with respect to time would require more steps
around perigee to maintain accuracy, further increasing the problem size. When thrusting commences through
the iterations, those perigee passages are at higher altitudes and integration accuracy increases. Large initial
constraint violations in velocity magnitude and z-velocity are owed to the initial orbit size and inclination.

Iteration history of the radial position constraint ψ0 is evidence of the motivation for its increased penalty
weight σ0 “ 100, the first entry in Σ. The algorithm favored sacrificing feasibility in radial position while
working to satisfy the other constraints, so much as to hinder advancements toward convergence in earlier
trials with a smaller penalty weight. The oscillatory behavior of the z-velocity constraint ψ4 suggests that
its penalty weight could also be increased to improve the rate of convergence. The other constraints appear
well-tuned, as they are directed quickly and uniformly toward feasibility. The multipliers also deviate far
from their final values before convergence. It is possible that a smaller trust-region to restrict the multiplier
update at each iteration might further improve performance. These are empirical observations and largely
speculative with regard to performance, but provide insight into how the algorithm might be tuned.

Case 2: 450.5 Revolutions With J2 Perturbation

Next, the gravitational perturbation of Earth’s oblateness is included by introducing the J2 spherical har-
monic term to the dynamic model. J2 causes a secular precession in the right ascension of the ascending
node and rotation in the argument of perigee. At 28.5˝ inclination, the argument of perigee advances in the
direction of spacecraft motion. Now the ballistic initial guess no longer terminates on the equator at GEO
radius.

The trajectory and steering profile for the J2-perturbed transfer are depicted in Figure 5. Compensating for
the J2 perturbation leads to an increased propellant mass requirement so that the final mass in GEO is reduced
to 1737.1949 kg. Time of flight increases to 342.13 days. The final inertial longitude defined by tan θ “ y{x
is unconstrained and drifts from 180˝ in the 2-body model to 199.8728˝ with the J2 perturbation. The number
of iterations, computer runtime, final mass, time of flight, and final longitude are summarized in Table 4 for
each example trajectory.

Thrust pitch and yaw steering exhibit similar behavior to the 2-body case, but the symmetries are warped
following perturbations to the node and eccentricity vectors. Algorithmic performance is also similar to the
2-body case, where the solution is approached early on and much of the effort is then refining the control
to meet convergence criteria. The number of iterations required increases to 110 in 61 minutes of runtime.
Multipliers take on a different set of values, largely reflected in the additional effort to satisfy the flight path
angle and z-coordinate constraints.

Case 3: 450.5 Revolutions With J2 and Lunar Gravity

Fidelity of the dynamic model is further improved by including the lunar gravity perturbation. The orbital
state of the Moon is obtained at each integration step (and substep) by analytical Kepler propagation of the
state in Table 2 to the current epoch, obtained from the the elapsed time t in the state vector. Note the 12 hour
offset in the Moon’s reference state and t0.

Figure 6 shows both the resulting transfer and the Moon’s trajectory in a three-dimensional view. The
transfer depicted in Figure 7 is similar to the J2 case. Nonetheless, the lunar gravity perturbation is leveraged
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(a) (b)

(c) (d)

Figure 1: An equatorial projection of the 450.5 revolution transfer from GTO to GEO with 2-body dynamics
is colored by (a) yaw angle contours and (b) pitch angle contours with coast arcs in blue. Markers are placed
at the initial and final states and a dashed line marks the target GEO orbit. (c) Thrust yaw angle and (d) pitch
angle are shown for the duration of the transfer.
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(a) (b)

Figure 2: Thrust magnitude through the 450.5 revolution transfer from GTO to GEO with 2-body dynamics
for (a) the full mission duration and (b) a zoom on the final days to emphasize the bang-bang control structure.

Figure 3: Iteration history of the scaled cost function, the final mass in kilograms, the scaled cost contri-
butions from the multiplier term and the scaled norm of the constraint violations for the 450.5 revolution
transfer from GTO to GEO with 2-body dynamics.
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Figure 4: Iteration history of the scaled constraints and multipliers for the 450.5 revolution transfer from
GTO to GEO with 2-body dynamics.
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(a) (b)

(c) (d)

Figure 5: An equatorial projection of the 450.5 revolution transfer from GTO to GEO with 2-body dynamics
and Earth’s J2 perturbation is colored by (a) yaw angle contours and (b) pitch angle contours with coast arcs
in blue. Markers are placed at the initial and final states and a dashed line marks the target GEO orbit.
(c) Thrust yaw angle and (d) pitch angle are shown for the duration of the transfer.
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(a) (b)

Figure 6: A three dimensional perspective of the 450.5 revolution transfer from GTO to GEO with 2-body
dynamics perturbed by Earth J2 lunar gravity (a) shows the trajectory of the Moon and (b) a closer view,
colored according to thrust yaw angle.

to improve the final mass to 1745.2012 kg. The resulting time of flight is 322.63 days and final longitude is
201.0805˝. Multipliers are similar to the J2 case with the exception of λ0, the multiplier associated with the
orbital radius constraint.

An additional 25 iterations from the J2 case are required to compute the transfer, coincidentally the same
increase from the 2-body case to J2 case. However, computer runtime sees a worse penalty. The increase to
107 minutes is owed largely to computing the Moon’s orbital state in the forward pass and its derivatives in
the STMs. With time included in the augmented state vector, the associated entries in the dynamics matrix
and tensor include the Moon’s velocity and acceleration.

Case 4: 1000.5 Revolutions With J2 and Lunar Gravity

A final example maintains the J2 and lunar gravity perturbed model, but increases the transfer duration to
1000.5 revolutions. Now there are 300,150 optimization variables. Reducing the penalty matrix entry σ0, the
weight on the orbital radius constraint, was found to improve performance.

Σ “ diagp10, 10, 1, 1, 1q (28)

Perigee thrust arcs that were characteristic of the earlier transfers do not arise. Iterates did not deviate far
from the target orbital radius to achieve a cheaper inclination change, so the higher penalty weight was
unwarranted.

Time of flight increases with the number of revolutions to 558.86 days. The increased duration allows for
more thrust arcs that are condensed around their optimal locations. The resulting final mass increases beyond
that of even the 2-body case to 1784.3632 kg. Of course, the increased transfer time also allows for more
precession in argument of perigee. The final longitude drifts to 276.7209˝.

Thrust angle profiles in Figure 8 depict a 76 day coast arc that begins 105 days into the transfer, indicating
that fixing the transfer to 1000.5 revolutions has over-prescribed the number of revolutions required. Pitch
and yaw steering exhibit different behavior on either side of this long coast arc.

The number of iterations required has increased along with the problem size up to 913. Total cost and
multiplier contributions λTψ evolve similarly to the previous cases, but the mass and feasibility history in
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(a) (b)

(c) (d)

Figure 7: An equatorial projection of the 450.5 revolution transfer from GTO to GEO with 2-body dynamics
perturbed by Earth J2 and lunar gravity is colored by (a) yaw angle contours and (b) pitch angle contours
with coast arcs in blue. Markers are placed at the initial and final states and a dashed line marks the target
GEO orbit. (c) Thrust yaw angle and (d) pitch angle are shown for the duration of the transfer.
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(a) (b)

(c) (d)

Figure 8: An equatorial projection of the 1000.5 revolution transfer from GTO to GEO with 2-body dynam-
ics perturbed by Earth J2 and lunar gravity is colored by (a) yaw angle contours and (b) pitch angle contours
with coast arcs in blue. Markers are placed at the initial and final states and a dashed line marks the target
GEO orbit. (c) Thrust yaw angle and (d) pitch angle are shown for the duration of the transfer.

Figure 9 suggest a step toward an intermediate solution that could not meet feasibility requirements.

The increase in computation time with problem size jumps an order of magnitude for the 1000.5 revolution
case up to nearly 1 day from runtimes of 1-2 hours for the shorter cases. While the number of control
variables grows linearly, there is no guarantee for the effect on convergence properties as the spacecraft
trajectory problem is nonlinear and the algorithm is sensitive to tuning. A super-linear but less than quadratic
increase in computational effort should be expected.

Computer memory requirements are driven by storage of the state and STMs. At each stage there are 11
state components, 112 STM components, and 113 STT components. Storing 8-byte values for 100 stages per
revolution, across 1000.5 revolutions, requires 1.17 GB. Ignoring the possible savings from symmetry and
sparsity patterns, the 3ˆ 3 control Hessians for each stage require just 7.2 MB, whereas a single Hessian for
all 300,150 control variables would require 720.72 GB.
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Figure 9: Iteration history of the scaled cost function, the final mass in kilograms, the scaled cost contri-
butions from the multiplier term and the scaled norm of the constraint violations for the 1000.5 revolution
transfer from GTO to GEO with 2-body dynamics perturbed by Earth J2 and lunar gravity.

Table 3: Multipliers for Example Cases.

Perturbations Nrev λ0 λ1 λ2 λ3 λ4

None 450.5 0.4874 -0.4205 5.4191 ˆ10´4 -2.8552 ˆ10´3 -0.2470

J2 450.5 3.2181 -0.2713 -0.1157 -4.2530 -0.1756

J2 and Lunar Gravity 450.5 0.9317 -0.2790 -0.0752 -2.9954 -0.1191

J2 and Lunar Gravity 1000.5 -0.3183 -0.3045 -0.0874 -0.0153 0.1486

Table 4: Summary of GTO to GEO Results.

Perturbations Nrev Iterations Runtime (minutes) mf (kg) tf (days) θ (deg)

None 450.5 86 54 1759.1754 315.75 180.0

J2 450.5 111 61 1737.1949 342.13 199.8728

J2 and Lunar Gravity 450.5 136 107 1745.3012 322.63 201.0805

J2 and Lunar Gravity 1000.5 913 1359 1784.3632 558.86 276.7209
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CONCLUSION

This paper presents an approach to the low-thrust many-revolution spacecraft trajectory optimization prob-
lem. Differential dynamic programming is well-suited for high-dimensional problems and the hybrid dif-
ferential dynamic programming algorithm has been implemented as the optimization procedure. Posing the
spacecraft trajectory problem with a dependency on eccentric anomaly instead of time is accomplished via
the Sundman transformation. Application of HDDP to the Sundman-transformed problem exhibits practical
performance for challenging trajectories that are otherwise intractable for common approaches. The utility of
this method has been demonstrated by a set of transfers from geostationary transfer orbit to geosynchronous
orbit in 450.5 revolutions for dynamic models of increasing fidelity and finally for a 1000.5 revolution trans-
fer.

The trajectories that have been presented should be viewed as local solutions for the given problem setup.
A large set of tuning parameters must be selected. Different sets of scaling factors, penalty weights, and
implementation in general will affect how the iterates advance toward different local optima. Discretization
could be refined or relaxed, and the control more or less sophisticated.

This approach is amenable to different Sundman tranformations, thrust representations, and dynamic mod-
els. One can simply “plug in” the choice of each, given that the required first and second derivatives are
available. Real-world mission design is then practical with models of a true propulsion system and true
dynamics.
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